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Exact 2D Thermo-Mechanical Stress Analysis of 

Exponentially Graded FG Laminate  

Sandeep S. Pendhari1, Sharawari P. Kulkarni2 

Abstract-In this paper, two-dimensional (2D), heat-conduction equation has analytically solved. The aim of this is to determine an exact temperature field 
along with the thickness of simply supported laminate followed by stress analysis for thermomechanical loadings. Here, a two-point boundary value problem 
(BVP) has formed without any assumptions along with the thickness of a laminate, which is governed by a set of first-order ordinary differential equations 
(ODEs). A BVP has transferred to initial value problems (IVPs) by shooting approach, and the 4th order Runga-Kutta-Gill numerical integration scheme 
has used during its solution. Young’s modulus, heat conductivity, and coefficient of thermal expansion have been graded exponentially along with the 
thickness of a laminate. Poisson’s ratio has held constant. Stress analysis has also performed for exponentially varied thermal fields through the depth of 
a laminate and compared with the structural response obtained for an exact variation of thermal field. 

Index Terms: FG Laminate, Semi-analytical, BVP, PDEs, ODE, Thermomechanical, Exponential 

——————————   ◆   —————————— 

1 INTRODUCTION 

Functionally graded materials (FGMs) are first developed in 

Japan during the year 1984 for engineering applications, 

particularly in the thermal environment. As the name 

suggested, FGM is formed by the merely varying 

microstructure of constitutes form one point to other points. 

These are carried out with the help of specific functions, mostly 

by power-law or exponential-law, which helps to have the best 

benefits of different individual materials. Due to the gradual 

variation of volume fraction of ingredients, changes of specific 

material properties are smooth and continuous. These results 

in an un-offsetting variation in stresses at the lamina interfaces, 

which eliminates the inter-laminar stresses and considerably 

reduces the risk of delamination, which was associated with a 

layered domain. FGM mainly required where a very high 

thermal gradient. Which is to sustained over small material 

thickness, and therefore, thermal stress analysis of such 

materials is of most valuable. 

Based on the Euler-Bernoulli theory (EBT), Sankar [1] presented 

an elasticity solution for simply supported functionally graded 

(FG) beams only for sinusoidal loading. Zhong and Yu [2] 

presented 2D analytical solutions based on Airy stress function 

for a cantilever beam with different boundary conditions and 

gradation laws. Higher-order flexural formulation, including 

wrapping and shear deformation effects presented by Benatta 

et al. [3]. Pendhari et al. [4] showed semi-analytical bending 

solutions for FG narrow beam subjected to transverse loads.  

Comparative studies between the number of shear deformation 

theories have performed by Thai and Vo [5] to investigate the 

effect of the power-law index on the bending and free vibration 

responses of the FG beam. Influence of material length scale 

parameter, different material compositions, and shear 

deformation modes on static and free vibration analyses of FG 

micro-beam have been investigated by Simsek and Reddy [6] 

by adopting a size-dependent unified beam theory. Mostly, FG 

materials need to withstand an extreme thermal environment. 

Noda [7] has determined the optimum gradation laws for 

which the thermal stresses to be minimum. A closed-form 

solution developed by Sankar and Tzeng [8] for FG beams by 

varying thermo-elastic coefficients as well as temperature field 

along with the depth of beam according to exponential 

gradation. Analytical modes based on classical beam theory 

(CBT) and shear deformation theory have presented by 

Carpentari and Paggi [9] and Kadoli et al. [10], respectively, for 

thermo-elastic stress analysis of FG beam subjected to ambient 

temperature. Thermal buckling and thermo-elastic vibration 

response of FG beams graded according to power-law by using 

third-order shear deformation theory have reported by 

Wattanasakulpong et al. [11]. Nazargh [12] has documented 

thermal stress analysis of FG beams graded along with two 

directions for a thermal field, which is approximated by 

Hermite interpolation along with the depth of the beam. Apetre 

et al. [13] presented comparative studies for FG sandwich 

beams based on first, third, and higher-order shear deformation 

theories as well Fourier-Galerkin method. Numerical solutions 

for FG structures subjected to thermal and mechanical loadings 

have developed by Chakraborty et al. [14] and Carrera et al. [15] 
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based on finite element (FE) methodology and by Wang and 

Qin [16] based on meshless methods. Buckling studies of FG 

beam graded according to power-law when subjected to the 

thermal loads has demonstrated by Kiani and Eslami [17] based 

on Euler’s Bernoulli theory. Thermo-mechanical solution based 

on the unified formulation for FG monolayer, as well as the 

sandwich beam, has discussed by Giunta et al. [18]. 

An effort has put here for the development of a semi-analytical 

model with the help of Fourier’s law and partial differential 

equation (PDE) of heat conduction. These are carried out to 

obtained exact variation of temperature field through the 

thickness of FG laminates followed by thermal stress analysis 

for actual and exponentially assumed varied temperature 

fields. Developed mathematical models consist of the formation 

of two-point BVP governed by a set of coupled first-order 

ODE’s ( 1) within the thickness of the laminate. 

( ) ( ) ( ) ( )
d

y z A z y z p z
dz

= +          (1) 

Here  ( )y z  is an n-dimensional vector of primary variables 

whose number (n) equals the order of PDE. For heat conduction 

formulation, ‘n’ is equal to two, whereas, for stress analysis, it 

is similar to the four. ( ),
( )

n n
A z

 , a coefficient matrix (a 

function of material properties in the thickness direction), and 

( )p z  is an n-dimensional vector of non-homogenous 

(loading). It is to note that loading terms include only body 

loads such as inertia loads, thermal loads, electric loads, etc.  

Surface loads have incorporated into the formulation during 

the solution procedure.  

2 MATHEMATICAL FORMULATIONS 

Consider a single layer of thickness ‘h,’ an FG beam of length 

‘a’ along ‘x’ direction or FG plate of range ‘a’ along ‘x’ direction 

with infinite extent along ‘y’ direction. FG beam/plate is 

supported at two opposite edges (x=0, a) and subjected to 

mechanical and thermal loading, which varies only along with 

the length ‘a.’ Under such conditions, laminate is in plane-stress 

or plane-strain condition of elasticity in the x-z plane (fig. 1). 

Elastic modulus 
( )E

, coefficient of thermal expansion 
( )

 and 

coefficient of thermal conductivity 
( )

 have varied only 

through the thickness of laminate accordingly to exponential 

law as, 

( ) ; ( )  ; ( )

b b b

t t t

E
In z In z In z

E

b b bE z E e z e z e

 

 
   

     
− − −     

     = = =       (2) 

Here, subscript b and t defined the respective material 

properties at the bottom and top surface of laminates, 

respectively. Further, it assumed that the FG material is 

isotropic at every point, and Poisson’s ratio is considered as 

kept constant throughout the domain. It is to point out that 

Kantrovich and Krylov [19] approach used in present 

formulations to transfer governing partial differential equation 

(PDE) to a set of coupled first-order ordinary differential 

equations (ODEs). 

 

Fig. 1. FG laminate subjected to thermal &/or mechanical loading 

3 SEMI-ANALYTICAL 2D HEAT CONDUCTION 
FORMULATION 

The use of FG materials is primarily in situations where large 

temperature fields are experiencing on the structure, and hence, 

accurate determination of structural responses is of the utmost 

importance. In this section, the closed-form formulation for the 

2D heat conduction equation has discussed. A thermal load and 

heat flux, as defined in (3) assumed with only known 

temperature value at the top and bottom of the laminate surface 

( )  at  0       at  b tT T z and T T z h= = = =
.    

1

1

( , ) ( )sin     

 ( , ) ( )sin

m

z z

m

m x
T x z T z and

a

m x
q x z q z

a







=



=

=

=





                                                     (3) 

A governing two-dimensional (2D) steady-state heat 

conduction equation without internal heat generation is,   

   

( ) ( )2 2

2 2

, ,
( ) ( ) 0

T x z T x z
z z

x z
 

 
+ =

                                         (4) 

According to Fourier’s law of heat conduction, heat flux in 

direction x and z is given by,   

( )
( )

( )
( ), ,

, ( )  ; , ( )x z

T x z T x z
q x z z q x z z

x z
 

 
= − = −

                     (5) 

where, iq = heat flux along x and z-axis ( i  = x, z) in 
2Wm−
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And, with the assumption, that amount of heat remains in the 

element due to heat flow is zero, the equilibrium equation in 

2D, 

( , ) ( , )
0x z

q x z q x z

x z

 
+ =

                   (6) 

Now, two variables viz. heat flux 
( )q

z  and temperature field 

( )T
 are assumed as a primary variable. By using algebraic 

manipulation of the  (5) and (6), a set of PDEs involving only 

two primary variables T  and zq
 obtained as follows. 

( )
( )

( ) ( )2

2

, , ,1
,  ; ( )

( )

z

z

T x z q x z T x z
q x z z

z z z x




  
= − = −

                         (7) 

By Substituting  (3) and its derivatives into (7), the following set 

of the first-order ODE obtain as 
2 2

2

( ) ( )1
( )       ( ) ( )

( )

m zm
zm m

dT z dq z m
q z z T z

dz z dz a






−
= = −

                   (8) 

Equation (8) represents the governing two-point BVP in ODE’s 

in the domain 0 z h   with known temperatures at the top and 

bottom surface of a laminate. 

4 SEMI-ANALYTICAL 2D STRESS ANALYSIS     
FORMULATION 

From the basic linear theory of elasticity, two-dimensional (2D) 

strain-displacement relationship, equations of equilibrium and 

constitutive relations in the thermo-elastic environment can be 

written as, 
( , ) ( , )

( , )  ; ( , )  ; 

( , ) ( , )
( , )

x z

xz

u x z w x z
x z x z

x z

u x z w x z
x z

z x

 



 
= =

 

 
= +

                                  (9) 

( , ) ( , )
0  

( , ) ( , )
0

x xz
x

zx z
z

x z x z
B

x z

x z x z
B

x z

 

 

 
+ + =

 

 
+ + =

                                              (10) 

and, 

11 12

12 22

33

( , ) 0 ( , ) ( )

( , ) 0 ( , ) ( )

( , ) 0 0 ( , )

i i i

x x

z z

xz xz

x z C C x z z T

x z C C x z z T

x z C x z

  

  

 

−     
    

= −    
    
                        (11) 

Here ( )z T  are the free thermal strains that arise due to 

temperature variation and 
,  x zB B

 are the body forces per unit 

volume in x and z directions, respectively. These body forces 

are to neglect in the numerical investigation for the sake of 

simplicity. Material coefficients ijC
 are the elastic constants 

derived by setting 
0y =

 and 
0y =

 in 3D material stiffness 

matrix for plane–strain and plane stress conditions, 

respectively. The reduced material ratios, ijC
for plane stress 

condition, are, 

( ) ( ) ( )11 12 21 222 2 2

( ) ( ) ( )
; ;

1 1 1

E z E z E z
C C C C



  
= = = =

− − −
 

And ijC
for the plane-strain state are, 

2 2

11 222 3 2 3

2

12 21 33 132 3

( )(1 ) ( )(1 )
; ;

(1 3 2 ) (1 3 2 )

( )( )
;

(1 3 2 )

E z E z
C C

E z
C C C G

 

   

 

 

− −
= =

− − − −

+
= = =

− −     
The above (9), (10) and (11) have a total of eight unknowns 

,  ,  ,  ,  ,  ,  ,  x z xz x z xzu w      
 in eight equations. After a 

simple algebraic manipulation of the above-obtained sets of 

equations, a collection of PDEs involving only four dependent 

variables ,  ,   and z xzu w    obtained as follows. 

33
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22
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22 22

( , )( , ) ( , )

( , ) 1 ( , )
( , ) ( ) ( , )( )                                  (12)
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− − −  

   

 
= − −

  

 

And, a secondary dependent variable, ( , )x x z  can be expressed 

as a function of the initial set of variables as follows. 

 
11 12 11 12

( , ) ( , )
( , ) ( ) ( ) ( , )x

u x z w x z
x z C C C C z T x z

x z
 

 
= + − +

  (13) 

The above PDE’s defined by  (12) can reduce to a coupled first-

order ODEs by using Fourier trigonometric series expansion.  

Where primary variables satisfying exactly the simply 

(diaphragm) support end conditions at 0 and x a=  as follows, 

1

( , ) ( )cosm

m

m x
u x z u z

a



=

 
=  

 


, 1

( , ) ( )sinm

m

m x
w x z w z

a



=

 
=  

 


          (14) 

and from the fundamental relations of the theory of elasticity, it 

can be shown that, 

1

( , ) ( )cosxz xzm

m

m x
x z z

l


 



=

=
          1

( , ) ( )sinz zm

m

m x
x z z

l


 



=

=
  (15) 

Further, applied transverse loading on the top of the laminate 

and temperature variation along the x-direction is also express 

in sinusoidal form as, 

1 1

( , ) ( )sin    ( , ) ( )sinm

m m

m x m x
P x z P z and T x z T z

l l

  

= =

= = 
               (16) 

Substituting Equation (14), (15) and (16) and its derivatives into 

(12), the following ordinary differential equations (ODEs)  has  

obtained as  
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− −  

  

 
= − 
                (17)  

 (17) represents the governing two-point BVP in ODE’s in the 

domain 0 z h   with stress components known at the top and 

bottom surfaces of a beam/plate. 

The basic approach to numerical integration of the BVP defined 

in Equation (8), (17) and the associated boundary conditions 

when it contains no boundary layer effects. It is to transform the 

given BVP into a set of IVP’s one non-homogeneous and 2
n

 

homogeneous, here n  equal to 2 and 4 for heat conduction 

formulation and stress analysis formulation, respectively. Table 

1 and Table 2 detailed the transformation of BVP to IVPs for 

thermal and stress analysis, respectively. Further, the solutions 

of defined BVP (. 8 and 17) have obtained by forming a linear 

combination of one non-homogeneous and 2
n

 homogeneous 

solution to satisfy the boundary conditions z h= . These give 

rise to a system of 2
n

 linear algebraic equations, the answer of 

which determines the unknown 2
n

 components at the starting 

edge 0z = . Then a final numerical integration of (8), (17) 

produces the desired results. The fourth-order Runge-Kutta 

method is used here for numerical combinations. 

Displacements, stresses, and temperature boundary conditions 

have detailed in Table 3. 

5 NUMERICAL STUDIES 

Computer codes have developed by incorporating the present 

formulation to determine the exact temperature variation 

through the thickness of FG laminates and also for 

thermomechanical stress analysis of FG laminates.  Semi-

analytical solutions of FG laminate (Material Set 1: Table 3) 

subjected to only mechanical loading under plane-stress 

conditions for elasticity has first compared with available 

solutions in the literature for validation purpose and tabulated 

in Table 4 and found to be very close in agreement with them. 

For numerical investigations in the present study, the reference 

temperature at the bottom and the top surface of the FG 

laminate are assuming as 200 C and 3000 C, respectively. Three 

material combinations listed in Table 3 have considered for 

investigating the effect of material gradation on the 

temperature distribution through the thickness of FG laminate 

and for stress analysis. This study had carried out when FG 

laminate is subject to only thermal loading and 

thermomechanical loading. Based on the convergence studies, 

around 20 to 30 steps have used through the thickness of 

laminate for numerical integration. Distribution of temperature 

field along the depth of FG laminate for all material sets has 

obtained by the semi-analytical approach for aspect ratios (s) 5, 

10, 20, and 50, and the results of the same indicated in fig. 2. The 

exponential distribution of temperature filed has also presented 

in the same figure and compared.  It is observed from fig. 2 that 

there is a considerable difference in temperature field obtained 

by solving the heat-conduction equation when compared with 

the assumed exponential temperature field. It is for material set 

1, which proves the sensitivity of material gradation of FG 

material for temperature distribution. However, the effect of 

aspect ratio on the temperature field for FG materials is not 

observing in the present investigation. It is to note that for plane 

strain conditions of elasticity, temperature variation through 

the thickness of laminate has remained the same. It is because 

heat conduction formulation is independent of materials 

Young’s and shear modulus and Poisson’s ratio.  

Further, stress analysis performed by using a semi-analytical 

approach when the laminate is subject to only the thermal loads 

for both plane-stress and plane-strain conditions of elasticity. 

All three material sets have considered here for aspect ratio (s) 

5, 10, 20, and 50. Following normalizations coefficients have 

used here for a uniform comparison of the results, 
2

2 2

10 10
              n n x xz

n n x xz

b b b b b b b b b b

u w sa
s u w

h h T s h T s E T E T

 
 

   
= = = = =

  
 (18) 

In which bar over the variables defines its normalized value. 

Response for in-plane displacement 
( )u

, transverse 

displacement 
( )w

, in-plane normal stress 
( )x

 , and transverse 

shear stress 
( )xz

obtained for specific temperature field [Model 

1] as well as for exponential varied temperature field [Model 2] 

have documented in Table 5 and 6 for plane-stress and plane 

strain conditions, respectively. Through thickness profile of in-

plane displacement ( )u
, transverse displacement 

( )w
, in-plane 

normal stress 
( )x

, and transverse shear stress ( )xz
 have 

compared between responses obtained from Model 1 and 

Model 2 for aspect ratio (s) 5 in fig. 3 to fig. 5 for material sets 1, 

2, and 3, respectively. Tentatively the same patterns of profiles 

for all parameters through the thickness of a laminate obtained 

by Model 1 and Model 2 have observed in fig. 3 to fig. 5. 

However, considerable differences in maximum and minimum 
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numerical values have noted for material set 1 and 2 (fig. 3 and 

4), whereas, for set 3, no significant difference in variation, as 

well as their numerical values, have been noted (fig. 5). 

From Tables 5 and 6, it has pointed out that stress analysis for 

exponential temperature field (Model 2) overestimate in-plane 

displacement 
( )u

 and transverse displacement 
( )w

 . These 

results are more than 22% and 11%, respectively, when 

compared with Model 1 for material set 1. Whereas 

underestimation of values of in-plane normal stress 
( )x

 and 

transverse shear stress 
( )xz

 by more than 50% and 45%, 

respectively, for set 1 when both Model 1 and Model 2 results 

have compared. It has even observed for thin laminate (s= 50). 

Further, for set 2 and set 3, no significant difference in 

magnitude is to see for in-plane displacement 
( )u

 and 

transverse displacement 
( )w

 observed. However, 

underestimation of in-plane normal stress 
( )x

 and transverse 

shear stress ( )xz
 has noted nearly 25% and 20% for material set 

2, and almost 11% and 8% for content set 3.    

Here, stress analysis performed by using a semi-analytical 

approach when the laminate is subject to thermal loading and 

transverse loading on the top surface of laminate for both 

plane-stress and plane-strain conditions of elasticity for all 

three material sets and aspect ratio (s) 5, 10, 20 and 50. 

Following normalized coefficients have used here for the 

comparison of the results. 

3 4 2

0 0

10000
       ; ; ; 

1000

x xz
x xz

b b b b b b b b

a u w
s u w

h h T s h T s P T s P T s

 
 

   
= = = = =

   (19) 

in which bar over the variables defines its normalized value. 

Response for in-plane displacement
( )u

, transverse 

displacement ( )w
, in plane normal stress, 

( )x
 and transverse 

shear stress ( )xz
obtained from Model 1 and Model 2 have 

documented in Tables 7 and 8 for plane-stress and plane strain 

conditions, respectively. Through thickness variation of in-

plane displacement 
( )u

, transverse displacement 
( )w

, in-plane 

normal stress 
( )x

 , and transverse shear stress 
( )xz

 have 

compared between responses obtained from Model 1 and 

Model 2 for aspect ratio (s) 5 in fig. 6 to fig. 8 for material set 1,2 

and 3, respectively. However, when the laminate is subject to 

thermal loading along with mechanical loading, no significant 

differences have seen for all parameters in the responses 

obtained from Model 1 and Model 2. These may be due to the 

neutralizing the overall effect of thermal loading by mechanical 

loading. However, an intensity of mechanical loading effects 

has not investigated in the present studies.  

6 CONCLUDING REMARKS 

Semi-analytical formulations based on a two-point boundary 

value problem governed by a set of coupled first-order 

ordinary differential equations (ODEs) and free from simplified 

assumptions along the thickness of laminates for heat 

conduction equation and stress analysis have discussed in this 

paper. A comparison between exponential varied temperature 

fields along the depth of the laminate and temperature field 

obtained through heat conduction solutions have documented. 

These are recorded for different material sets and for various 

aspect ratios ranging from thick to thin laminates, which proves 

the sensitivity of the determination of the exact temperature 

field before stress analysis. However, the effect of aspect ratio 

is not observing in the present studies on the thermal field 

through the laminate thickness.  

Further, stress analyses performed and document for both 

thermal and thermomechanical loading under plane-stress and 

plane-strain conditions of elasticity. Considerable differences 

have been noted down during stress analysis for the thermal 

load on various parameters from displacement and stress 

groups. It has also observed that no significant difference 

recorded for stress analysis with thermomechanical loading.  
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TABLE 1 

TRANSFORMATION OF BVP INTO IVP’S FOR THERMAL ANALYSIS 

Integration 

No. 

Bottom edge 
( )0z =

 Top edge 
( )z h=

 

( )T z  ( )zq z
 

( )T z  ( )zq z
 

1 Known 
0 

(assumed) 
M11 M21 

2 
0 

(assumed) 

1 

(assumed) 
M12 M22 

3 

(Final) 

(0)T  

(known) 
K1 

( )T h  

 (known) 
( )zq h

 

TABLE 2 

TRANSFORMATION OF BVP INTO IVP’S FOR STRESS ANALYSIS 

Integratio

n  

No. 

Bottom edge 
( )0z =

 Top edge 
( )z h=

 

Load/Tem

p.  

Term 

u  w  xz
 z

 
u  w  xz

 z
 

 

1 
0 

(assumed) 

0 

(assumed) 

0 

(known) 

0 

(known) 
Y11 Y21 Y31 Y21 Include 

2 
1 

(assumed) 

0 

(assumed) 

0 

(assumed) 

0 

(assume

d) 

Y12 Y22 Y32 Y42 Exclude 

3 
0 

(assumed) 

1 

(assumed) 

0 

(assumed) 

0 

(assume

d) 

Y13 Y23 Y33 Y34 Exclude 

4 (Final) X1 X2 
0 

(known) 

0 

(known) 
( )u h  ( )w h  

0 

(known) 

0 

(known) 
Include 

 

TABLE 3 

MATERIAL PROPERTIES 

Set 

 
Material Properties 

a 

1 -6 1 1At bottom, 0 70              0.3      4Aluminium    =20    =23 10  :   mz E GPa K W K  − − −=  = =   

1 6 1 1At top,       151            0.3   Zirconia       =2.09 1    : 1     0 0    mz h E GPa K W K  − − − −=  = = =   

b 

1 -6 1 1At bottom, 0 70             0.3        0Alumin  iu =204m :     = 3 2 1  mz E GPa K W K  − − −=  = =   

1 6 1 1At top,       380          0.326 Alumina      10.40  7.4 10   :     mz h E GPa K W K  − − − −=  = = = =   

c 
1 -6 1 1At bottom, 0 Monel   227.24      0.3         =25       =15 10        :  mz E GPa K W K  − − −=  = =   

557

IJSER

http://www.ijser.org/


International Journal Of Scientific & Engineering Research, Volume 10, Issue 12, December-2019                                                                                       
ISSN 2229-5518 

 

IJSER © 2019 

http://www.ijser.org 

1 6 1 1At top,      151           0.3    Zirconia        =2.09 1    : 0       0   1 mz h E GPa K W K  − − − −=  = = =   

Ref. Kadoli et al. [11] 
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Fig. 2. Comparison of through thickness exact and exponential temperature variations. 
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Fig. 3. The Variation of normalized (a) in-plane displacement nu
 (b) transverse displacement nw

 (c) in-plane normal stress x
 (d) transverse shear 

stress xz
 through thickness of FG laminate under plane-stress condition subjected to the thermal load, 

( , ) ( )sin xT x z T z
a

=
 (Material set 1). 
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Fig. 4. The Variation of normalized (a) in-plane displacement nu
 (b) transverse displacement nw

 (c) in-plane normal stress x
 (d) transverse shear 

stress xz
 through thickness of FG laminate under plane-stress condition subjected to the thermal load, 

( , ) ( )sin xT x z T z
a

=
 (Material set 2). 
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Fig. 5. The Variation of normalized (a) in-plane displacement nu
 (b) transverse displacement nw

 (c) in-plane normal stress x
 (d) transverse shear 

stress xz
 through thickness of FG laminate under plane-stress condition subjected to the thermal load, 

( , ) ( )sin xT x z T z
a

=
 (Material set 3).
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TABLE 4 

NORMALIZED TRANSVERSE DISPLACEMENTS 
( )u

AND STRESSES 
( ),x xz 

OF FG LAMINATE 

SUBJECTED TO ONLY MECHANICAL LOADING PLANE STRESS CONDITION 

 

s Source ( ),max
2n

aw
 

( )0, maxxz
 

( ) ,0
2x

a
 

5 
Present Analysis  19.919 0.480 0.797 

Sankar (2001) 19.779 0.480 0.797 

10 
Present Analysis 18.615 0.481 0.787 

Sankar (2001) 18.568 0.481 0.787 

50 
Present Analysis 18.198 0.481 0.783 

Sankar (2001) 18.196 0.481 0.784 
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TABLE 5 

NORMALIZED IN-PLANE AND TRANSVERSE DISPLACEMENTS 
( ),u w

AND STRESSES 
( ),x xz 

OF FG     

LAMINATE UNDER THERMAL LOADING FOR MATERIAL SET 1, 2 AND 3 FOR PLANE STRESS CONDITION 

s Source  (0, &0)u h
 ( ) ,max

2
aw

 
(0,max)xz

 ( ), & 0
2x

a h
 

Material Set 1 

5 
Model 1 -2.980              0.157 5.589 2.841 -3.972             -1.247 

Model 2 -3.683             -0.192 6.329 1.428 -1.588             -0.698 

10 
Model 1 -1.483              0.913 5.160 5.850 -4.021             -1.287 

Model 2 -1.816             -0.072 5.746 3.175 -1.756             -0.774 

20 
Model 1 -0.740              0.047 5.052 11.786 -4.034             -1.297 

Model 2 -0.905             -0.330 5.601 6.514 -1.799             -0.793 

50 
Model 1 -0.296              0.019 5.021 29.524 -4.037             -1.300 

Model 2 -0.361             -0.012 5.560 16.399 -1.810             -0.797 

Material Set 2 

5 
Model 1 -2.742               -0.198 4.635 1.787 -2.707             -0.689 

Model 2 -2.847               -0.326 4.635 1.244 -1.812             -0.489 

10 
Model 1 -1.368               -0.091 4.213 3.701 -2.759             -0.714 

Model 2 -1.407               -0.138 4.192 2.892 -2.096             -0.566 

20 
Model 1 -0.683               -0.045 4.105 7.465 -2.773             -0.720 

Model 2 -0.701               -0.066 4.082 5.990 -2.168             -0.585 

50 
Model 1 -0.273               -0.018 4.075 18.710 -2.777             -0.722 

Model 2 -0.280               -0.026 4.052 15.120 -2.188             -0.591 

Material Set 3 

5 
Model 1 -5.184              -0.034 9.261 1.445 -1.028             -0.947 

Model 2 -5.132              -0.017 9.193 1.492 -1.073             -0.974 

10 
Model 1 -2.585              -0.006 8.477 2.987 -1.041             -0.980 

Model 2 -2.523               0.014 8.337 3.212 -1.149             -1.044 

20 
Model 1 -1.291              -0.002 8.277 6.025 -1.045             -0.989 

Model 2 -1.256               0.010 8.124 6.540 -1.168             -1.062 

50 
Model 1 -0.516              -0.001 8.221 15.098 -1.045             -0.991 

Model 2 -0.502               0.004 8.064 16.432 -1.173             -1.067 
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TABLE 6 

NORMALIZED IN-PLANE AND TRANSVERSE DISPLACEMENTS 
( ),u w

AND STRESSES 
( ),x xz 

OF FG 

LAMINATE UNDER THERMAL LOADING FOR MATERIAL SET 1, 2 AND 3 FOR PLANE STRAIN CONDITION 

s Source  (0, &0)u h
 ( ) ,max

2
aw

 
(0,max)xz

 ( ), & 0
2x

a h
 

Material Set 1 

5 
Model 1 -2.980                1.573 5.589 3.122 -4.364             -1.370 

Model 2 -3.683               -1.920 6.330 1.569 -1.745             -0.767 

10 
Model 1 -1.483                0.091 5.161 6.428 -4.419             -1.414 

Model 2 -1.817               -0.072 5.747 3.489 -1.930             -0.850 

20 
Model 1 -0740                 0.047 5.052 12.951 -4.432             -1.426 

Model 2 -0.905               -0.330 5.601 7.158 -1.976             -0.871 

50 
Model 1 -0.296                0.019 5.022 32.444 -4.436             -1.429 

Model 2 -0.362               -0.013 5.561 18.022 -1.989             -0.877 

Material Set 2 

5 
Model 1 -2.742               -0.198 4.635 1.999 -3.027              -0.771 

Model 2 -2.847               -0.326 4.631 1.392 -2.027              -0.546 

10 
Model 1 -1.368               -0.091 4.213 4.140 -3.087              -0.799 

Model 2 -1.407               -0.138 4.192 3.235 -2.345              -0.633 

20 
Model 1 -0.683               -0.045 4.105 8.351 -3.102              -0.806 

Model 2 -0.701               -0.066 4.082 6.701 -2.426             -0.655 

50 
Model 1 -0.273               -0.018 4.075 20.931 -3.106             -0.808 

Model 2 -0.280               -0.026 4.052 16.915 -2.448             -0.661 

Material Set 3 

5 
Model 1 -5.184               -0.034 9.261 1.587 -1.130             -1.040 

Model 2 -5.132               -0.017 9.193 1.639 -1.179             -1.070 

10 
Model 1 -2.585               -0.006 8.477 3.282 -1.144             -1.077 

Model 2 -2.523                0.014 8.337 3.530 -1.262             -1.147 

20 
Model 1 -1.291               -0.002 8.277 6.620 -1.148             -1.087 

Model 2  -1.256               0.010 8.124 7.187 -1.283             -1.167 

50 
Model 1  -0.516              -0.001 8.221 16.591 -1.149             -1.089 

Model 2 -0.502                0.004 8.064 18.057 -1.289             -1.172 
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Fig. 6. The Variation of normalized (a) in-plane displacement nu
 (b) transverse displacement nw

 (c) in-plane normal stress x
 (d) transverse shear 

stress xz
 through thickness of FG laminate under plane-stress condition subjected to thermomechanical load, (Material set 1). 
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Fig. 7. The Variation of normalized (a) in-plane displacement nu
 (b) transverse displacement nw

 (c) in-plane normal stress x
 (d) transverse shear 

stress xz
 through thickness of FG laminate under plane-stress condition subjected to thermomechanical load, (Material set 2). 
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Fig. 8. The Variation of normalized (a) in-plane displacement 
nu

 (b) transverse displacement nw
 (c) in-plane normal stress x

 (d) transverse shear 

stress xz
 through thickness of FG laminate under plane-stress condition subjected to thermomechanical load, (Material set 3). 
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